Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 115(4): 750-759, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285597

RESUMO

This study presents a high-dimensional immunohistochemistry approach to assess human γδ T cell subsets in their native tissue microenvironments at spatial resolution, a hitherto unmet scientific goal due to the lack of established antibodies and required technology. We report an integrated approach based on multiplexed imaging and bioinformatic analysis to identify γδ T cells, characterize their phenotypes, and analyze the composition of their microenvironment. Twenty-eight γδ T cell microenvironments were identified in tissue samples from fresh frozen human colon and colorectal cancer where interaction partners of the immune system, but also cancer cells were discovered in close proximity to γδ T cells, visualizing their potential contributions to cancer immunosurveillance. While this proof-of-principle study demonstrates the potential of this cutting-edge technology to assess γδ T cell heterogeneity and to investigate their microenvironment, future comprehensive studies are warranted to associate phenotypes and microenvironment profiles with features such as relevant clinical characteristics.


Assuntos
Linfócitos Intraepiteliais , Neoplasias , Humanos , Receptores de Antígenos de Linfócitos T gama-delta , Proteômica , Subpopulações de Linfócitos T , Microambiente Tumoral
3.
Patterns (N Y) ; 4(9): 100829, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720335

RESUMO

The spatial organization of various cell types within the tissue microenvironment is a key element for the formation of physiological and pathological processes, including cancer and autoimmune diseases. Here, we present S3-CIMA, a weakly supervised convolutional neural network model that enables the detection of disease-specific microenvironment compositions from high-dimensional proteomic imaging data. We demonstrate the utility of this approach by determining cancer outcome- and cellular-signaling-specific spatial cell-state compositions in highly multiplexed fluorescence microscopy data of the tumor microenvironment in colorectal cancer. Moreover, we use S3-CIMA to identify disease-onset-specific changes of the pancreatic tissue microenvironment in type 1 diabetes using imaging mass-cytometry data. We evaluated S3-CIMA as a powerful tool to discover novel disease-associated spatial cellular interactions from currently available and future spatial biology datasets.

4.
Front Bioinform ; 3: 1159381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564726

RESUMO

Since its introduction into the field of oncology, deep learning (DL) has impacted clinical discoveries and biomarker predictions. DL-driven discoveries and predictions in oncology are based on a variety of biological data such as genomics, proteomics, and imaging data. DL-based computational frameworks can predict genetic variant effects on gene expression, as well as protein structures based on amino acid sequences. Furthermore, DL algorithms can capture valuable mechanistic biological information from several spatial "omics" technologies, such as spatial transcriptomics and spatial proteomics. Here, we review the impact that the combination of artificial intelligence (AI) with spatial omics technologies has had on oncology, focusing on DL and its applications in biomedical image analysis, encompassing cell segmentation, cell phenotype identification, cancer prognostication, and therapy prediction. We highlight the advantages of using highly multiplexed images (spatial proteomics data) compared to single-stained, conventional histopathological ("simple") images, as the former can provide deep mechanistic insights that cannot be obtained by the latter, even with the aid of explainable AI. Furthermore, we provide the reader with the advantages/disadvantages of DL-based pipelines used in preprocessing highly multiplexed images (cell segmentation, cell type annotation). Therefore, this review also guides the reader to choose the DL-based pipeline that best fits their data. In conclusion, DL continues to be established as an essential tool in discovering novel biological mechanisms when combined with technologies such as highly multiplexed tissue imaging data. In balance with conventional medical data, its role in clinical routine will become more important, supporting diagnosis and prognosis in oncology, enhancing clinical decision-making, and improving the quality of care for patients. Since its introduction into the field of oncology, deep learning (DL) has impacted clinical discoveries and biomarker predictions. DL-driven discoveries and predictions in oncology are based on a variety of biological data such as genomics, proteomics, and imaging data. DL-based computational frameworks can predict genetic variant effects on gene expression, as well as protein structures based on amino acid sequences. Furthermore, DL algorithms can capture valuable mechanistic biological information from several spatial "omics" technologies, such as spatial transcriptomics and spatial proteomics. Here, we review the impact that the combination of artificial intelligence (AI) with spatial omics technologies has had on oncology, focusing on DL and its applications in biomedical image analysis, encompassing cell segmentation, cell phenotype identification, cancer prognostication, and therapy prediction. We highlight the advantages of using highly multiplexed images (spatial proteomics data) compared to single-stained, conventional histopathological ("simple") images, as the former can provide deep mechanistic insights that cannot be obtained by the latter, even with the aid of explainable AI. Furthermore, we provide the reader with the advantages/disadvantages of the DL-based pipelines used in preprocessing the highly multiplexed images (cell segmentation, cell type annotation). Therefore, this review also guides the reader to choose the DL-based pipeline that best fits their data. In conclusion, DL continues to be established as an essential tool in discovering novel biological mechanisms when combined with technologies such as highly multiplexed tissue imaging data. In balance with conventional medical data, its role in clinical routine will become more important, supporting diagnosis and prognosis in oncology, enhancing clinical decision-making, and improving the quality of care for patients.

5.
Cell ; 186(17): 3686-3705.e32, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595566

RESUMO

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Associadas à Mucosa , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/patologia , Macrófagos Associados a Tumor
6.
Front Immunol ; 13: 906352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874702

RESUMO

Immune checkpoint blockade (ICB) is standard-of-care for patients with metastatic melanoma. It may re-invigorate T cells recognizing tumors, and several tumor antigens have been identified as potential targets. However, little is known about the dynamics of tumor antigen-specific T cells in the circulation, which might provide valuable information on ICB responses in a minimally invasive manner. Here, we investigated individual signatures composed of up to 167 different melanoma-associated epitope (MAE)-specific CD8+ T cells in the blood of stage IV melanoma patients before and during anti-PD-1 treatment, using a peptide-loaded multimer-based high-throughput approach. Additionally, checkpoint receptor expression patterns on T cell subsets and frequencies of myeloid-derived suppressor cells and regulatory T cells were quantified by flow cytometry. Regression analysis using the MAE-specific CD8+ T cell populations was applied to identify those that correlated with overall survival (OS). The abundance of MAE-specific CD8+ T cell populations, as well as their dynamics under therapy, varied between patients. Those with a dominant increase of these T cell populations during PD-1 ICB had a longer OS and progression-free survival than those with decreasing or balanced signatures. Patients with a dominantly increased MAE-specific CD8+ T cell signature also exhibited an increase in TIM-3+ and LAG-3+ T cells. From these results, we created a model predicting improved/reduced OS by combining data on dynamics of the three most informative MAE-specific CD8+ T cell populations. Our results provide insights into the dynamics of circulating MAE-specific CD8+ T cell populations during ICB, and should contribute to a better understanding of biomarkers of response and anti-cancer mechanisms.


Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Epitopos/metabolismo , Humanos , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T
7.
J Allergy Clin Immunol ; 150(2): 312-324, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716951

RESUMO

BACKGROUND: Comorbidities are risk factors for development of severe coronavirus disease 2019 (COVID-19). However, the extent to which an underlying comorbidity influences the immune response to severe acute respiratory syndrome coronavirus 2 remains unknown. OBJECTIVE: Our aim was to investigate the complex interrelations of comorbidities, the immune response, and patient outcome in COVID-19. METHODS: We used high-throughput, high-dimensional, single-cell mapping of peripheral blood leukocytes and algorithm-guided analysis. RESULTS: We discovered characteristic immune signatures associated not only with severe COVID-19 but also with the underlying medical condition. Different factors of the metabolic syndrome (obesity, hypertension, and diabetes) affected distinct immune populations, thereby additively increasing the immunodysregulatory effect when present in a single patient. Patients with disorders affecting the lung or heart, together with factors of metabolic syndrome, were clustered together, whereas immune disorder and chronic kidney disease displayed a distinct immune profile in COVID-19. In particular, severe acute respiratory syndrome coronavirus 2-infected patients with preexisting chronic kidney disease were characterized by the highest number of altered immune signatures of both lymphoid and myeloid immune branches. This overall major immune dysregulation could be the underlying mechanism for the estimated odds ratio of 16.3 for development of severe COVID-19 in this burdened cohort. CONCLUSION: The combinatorial systematic analysis of the immune signatures, comorbidities, and outcomes of patients with COVID-19 has provided the mechanistic immunologic underpinnings of comorbidity-driven patient risk and uncovered comorbidity-driven immune signatures.


Assuntos
COVID-19 , Síndrome Metabólica , Insuficiência Renal Crônica , Comorbidade , Humanos , Imunidade , Síndrome Metabólica/epidemiologia , SARS-CoV-2
9.
NPJ Precis Oncol ; 5(1): 80, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480077

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) has emerged as a promising candidate for precision medicine, especially in the case of activating FGFR2 gene fusions. In addition to fusions, a considerable fraction of iCCA patients reveals FGFR2 mutations, which might lead to uncontrolled activation of the FGFR2 pathway but are mostly of unknown functional significance. A current challenge for molecular tumor boards (MTB) is to predict the functional consequences of such FGFR2 alterations to guide potential treatment decisions. We report two iCCA patients with extracellular and juxtamembrane FGFR2 mutations. After in silico investigation of the alterations and identification of activated FGFR2 downstream targets in tumor specimens by immunohistochemistry and transcriptome analysis, the MTB recommended treatment with an FGFR-inhibiting tyrosine kinase inhibitor. Both patients developed a rapidly detectable and prolonged partial response to treatment. These two cases suggest an approach to characterize further detected FGFR2 mutations in iCCA to enable patients´ selection for a successful application of the FGFR -inhibiting drugs.

10.
Immunity ; 54(7): 1578-1593.e5, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34051147

RESUMO

Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.


Assuntos
COVID-19/imunologia , SARS-CoV-2/patogenicidade , Adulto , Enzima de Conversão de Angiotensina 2/metabolismo , Apresentação de Antígeno , Biomarcadores/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , COVID-19/patologia , Feminino , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunidade Inata , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/imunologia , Pneumonia/imunologia , Pneumonia/patologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
11.
Arthritis Rheumatol ; 73(7): 1288-1300, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33455083

RESUMO

OBJECTIVE: To identify the genetic variants that affect gene expression (expression quantitative trait loci [eQTLs]) in systemic sclerosis (SSc) and to investigate their role in the pathogenesis of the disease. METHODS: We performed an eQTL analysis using whole-blood sequencing data from 333 SSc patients and 524 controls and integrated them with SSc genome-wide association study (GWAS) data. We integrated our findings from expression modeling, differential expression analysis, and transcription factor binding site enrichment with key clinical features of SSc. RESULTS: We detected 49,123 validated cis-eQTLs from 4,539 SSc-associated single-nucleotide polymorphisms (SNPs) (PGWAS < 10-5 ). A total of 1,436 genes were within 1 Mb of the 4,539 SSc-associated SNPs. Of those 1,436 genes, 565 were detected as having ≥1 eQTL with an SSc-associated SNP. We developed a strategy to prioritize disease-associated genes based on their expression variance explained by SSc eQTLs (r2 > 0.05). As a result, 233 candidates were identified, 134 (58%) of them associated with hallmarks of SSc and 105 (45%) of them differentially expressed in the blood cells, skin, or lung tissue of SSc patients. Transcription factor binding site analysis revealed enriched motifs of 24 transcription factors (5%) among SSc eQTLs, 5 of which were found to be differentially regulated in the blood cells (ELF1 and MGA), skin (KLF4 and ID4), and lungs (TBX4) of SSc patients. Ten candidate genes (4%) can be targeted by approved medications for immune-mediated diseases, of which only 3 have been tested in clinical trials in patients with SSc. CONCLUSION: The findings of the present study indicate a new layer to the molecular complexity of SSc, contributing to a better understanding of the pathogenesis of the disease.


Assuntos
Regulação da Expressão Gênica/genética , Escleroderma Sistêmico/genética , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Estudos de Associação Genética , Humanos , Proteínas Inibidoras de Diferenciação/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
12.
Arthritis Rheumatol ; 73(6): 1073-1085, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33497037

RESUMO

OBJECTIVE: Clinical heterogeneity, a hallmark of systemic autoimmune diseases, impedes early diagnosis and effective treatment, issues that may be addressed if patients could be classified into groups defined by molecular pattern. This study was undertaken to identify molecular clusters for reclassifying systemic autoimmune diseases independently of clinical diagnosis. METHODS: Unsupervised clustering of integrated whole blood transcriptome and methylome cross-sectional data on 955 patients with 7 systemic autoimmune diseases and 267 healthy controls was undertaken. In addition, an inception cohort was prospectively followed up for 6 or 14 months to validate the results and analyze whether or not cluster assignment changed over time. RESULTS: Four clusters were identified and validated. Three were pathologic, representing "inflammatory," "lymphoid," and "interferon" patterns. Each included all diagnoses and was defined by genetic, clinical, serologic, and cellular features. A fourth cluster with no specific molecular pattern was associated with low disease activity and included healthy controls. A longitudinal and independent inception cohort showed a relapse-remission pattern, where patients remained in their pathologic cluster, moving only to the healthy one, thus showing that the molecular clusters remained stable over time and that single pathogenic molecular signatures characterized each individual patient. CONCLUSION: Patients with systemic autoimmune diseases can be jointly stratified into 3 stable disease clusters with specific molecular patterns differentiating different molecular disease mechanisms. These results have important implications for future clinical trials and the study of nonresponse to therapy, marking a paradigm shift in our view of systemic autoimmune diseases.


Assuntos
Doenças Autoimunes/classificação , Doenças Autoimunes/genética , Epigenoma , Perfilação da Expressão Gênica , Adulto , Idoso , Síndrome Antifosfolipídica/genética , Síndrome Antifosfolipídica/imunologia , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Estudos de Casos e Controles , Análise por Conglomerados , Estudos Transversais , Epigenômica , Feminino , Humanos , Inflamação/imunologia , Interferons/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Doença Mista do Tecido Conjuntivo/genética , Doença Mista do Tecido Conjuntivo/imunologia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/imunologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Doenças do Tecido Conjuntivo Indiferenciado/genética , Doenças do Tecido Conjuntivo Indiferenciado/imunologia
13.
Monoclon Antib Immunodiagn Immunother ; 38(1): 25-29, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30759058

RESUMO

Fluorescent dyes are excited by light and emit light at a longer wavelength. Photobleaching is one the most important obstacles in fluorescent image capturing. Photochemical alteration of a fluorescent dye caused by several excitation/emission cycles results in a fluorophore to be unable to emit light. In this study, R-phycoerythrin (R-PE) and Alexa Fluor 568 were separately conjugated to streptavidin. The efficiency of conjugations, R-PE-streptavidin and streptavidin-Alexa Fluor 568, were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and spectrophotometry, respectively. Herceptin, a humanized therapeutic antibody, was subsequently biotinylated. The reactivity of biotin-labeled Herceptin was examined by enzyme-linked immunosorbent assay. The photobleaching of R-PE-streptavidin and streptavidin-Alexa Fluor 568 were then compared in an immunofluorescent staining on a breast cancer cell line, BT-474. Our data showed that streptavidin-Alexa Fluor 568 was more photostable than R-PE-streptavidin, which provides more time for longer viewing of labeled proteins and image capturing.


Assuntos
Neoplasias da Mama/patologia , Rastreamento de Células/métodos , Corantes Fluorescentes/farmacologia , Ficoeritrina/farmacologia , Biotina/química , Feminino , Corantes Fluorescentes/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Células MCF-7 , Fotodegradação/efeitos dos fármacos , Ficoeritrina/química , Estreptavidina/química
14.
Ann Rheum Dis ; 77(12): 1782-1789, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30065042

RESUMO

OBJECTIVES: Chronic renal impairment remains a feared complication of lupus nephritis (LN). The present work aimed at identifying mechanisms and markers of disease severity in renal tissue samples from patients with LN. METHODS: We performed high-throughput transcriptomic studies (Illumina HumanHT-12 v4 Expression BeadChip) on archived kidney biopsies from 32 patients with LN and eight controls (pretransplant donors). Histological staging (glomerular and tubular scores) and immunohistochemistry experiments were performed on the same and on a replication set of 37 LN kidney biopsy samples. RESULTS: A group of LN samples was identified by unsupervised clustering studies based on their gene expression features, that is, the overexpression of transcripts involved in antigen presentation, T and B cell activation. These samples were characterised by a significantly lower estimated glomerular filtration rate (eGFR) at the time of biopsy (T0) compared with the other systemic lupus erythematosus samples. Yet, apparent disease duration at T0, double-stranded DNA antibody titres at T0 and other relevant characteristics (serum C3, proteinuria, histological scores, numbers of previous flares) were not different between groups.Immunohistochemistry studies confirmed the association between interstitial infiltration by adaptive immune effectors and decreased renal function in the same and in a replication group of LN kidney biopsies. This was associated with transcriptomic, histological and immunohistochemical evidence of renal tubular cell involvement. CONCLUSION: Interstitial infiltration of LN kidney biopsies by adaptive immune effectors is associated with impaired renal tubular cell function and decreased eGFR. These results open new perspectives in evaluating and treating patients with LN, focusing on intrarenal mechanisms of immune cell activation.


Assuntos
Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Adulto , Feminino , Humanos , Túbulos Renais/patologia , Masculino , Insuficiência Renal/imunologia , Insuficiência Renal/patologia , Transcriptoma
15.
Monoclon Antib Immunodiagn Immunother ; 34(6): 390-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26683178

RESUMO

Sortilin, as a member of Vps10p-domain sorting receptor family, is overexpressed in a number of malignancies, including ovarian carcinoma. Antibodies against sortilin may contribute to further clarification of sortilin functional activities in signal transduction, intracellular sorting of proteins, and endocytosis. The aim of this study was to produce a monoclonal antibody against a synthetic peptide derived from extracellular N-terminal region of sortilin to be used as a tool for investigating sortilin characteristics in ovarian carcinoma. A synthetic peptide derived from the last 50 amino acids of extracellular domain of sortilin protein was selected and conjugated to keyhole limpet hemocyanin and used to immunize mice. The anti-sortilin monoclonal antibody (MAb), clone 2D8, was purified from supernatant of final hybridoma clone using peptide-affinity chromatography column. Reactivity of antibody with the immunizing peptide was assessed in ELISA. Furthermore, flow cytometry and Western blot analyses were used to investigate the reactivity of antibody with its target in a panel of ovarian carcinoma cell lines or tissues. MAb 2D8 was able to recognize the coated immunizing peptide in ELISA and detect its protein target, sortilin, in flow cytometry and Western blot analyses. The achieved data suggest that the developed monoclonal antibody may be applicable as a research tool for detection of sortilin protein in Western blot as well as flow cytometry tests.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/análise , Anticorpos Monoclonais/química , Carcinoma/diagnóstico , Neoplasias Ovarianas/diagnóstico , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Western Blotting , Carcinoma/genética , Carcinoma/imunologia , Carcinoma/patologia , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Expressão Gênica , Hemocianinas/química , Humanos , Hibridomas/imunologia , Imunização , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Peptídeos/administração & dosagem , Peptídeos/síntese química , Peptídeos/imunologia , Estrutura Terciária de Proteína
16.
PLoS Comput Biol ; 11(5): e1004221, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25965262

RESUMO

The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale).


Assuntos
Córtex Cerebral/fisiologia , Cromatina/genética , Regulação da Expressão Gênica , Animais , Núcleo Celular/genética , Córtex Cerebral/metabolismo , Cromatina/metabolismo , Cromatina/ultraestrutura , Cromossomos , Genoma , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Relação Estrutura-Atividade
17.
BMC Bioinformatics ; 16 Suppl 4: S5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25734246

RESUMO

BACKGROUND: Acute Myeloid Leukemia (AML) is characterized by various cytogenetic and molecular abnormalities. Detection of these abnormalities is important in the risk-classification of patients but requires laborious experimentation. Various studies showed that gene expression profiles (GEP), and the gene signatures derived from GEP, can be used for the prediction of subtypes in AML. Similarly, successful prediction was also achieved by exploiting DNA-methylation profiles (DMP). There are, however, no studies that compared classification accuracy and performance between GEP and DMP, neither are there studies that integrated both types of data to determine whether predictive power can be improved. APPROACH: Here, we used 344 well-characterized AML samples for which both gene expression and DNA-methylation profiles are available. We created three different classification strategies including early, late and no integration of these datasets and used them to predict AML subtypes using a logistic regression model with Lasso regularization. RESULTS: We illustrate that both gene expression and DNA-methylation profiles contain distinct patterns that contribute to discriminating AML subtypes and that an integration strategy can exploit these patterns to achieve synergy between both data types. We show that concatenation of features from both data sets, i.e. early integration, improves the predictive power compared to classifiers trained on GEP or DMP alone. A more sophisticated strategy, i.e. the late integration strategy, employs a two-layer classifier which outperforms the early integration strategy. CONCLUSION: We demonstrate that prediction of known cytogenetic and molecular abnormalities in AML can be further improved by integrating GEP and DMP profiles.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , DNA de Neoplasias/genética , Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/genética , Adulto , Humanos , Cariotipagem , Leucemia Mieloide Aguda/patologia , Estadiamento de Neoplasias , Transdução de Sinais
18.
Nat Commun ; 6: 6381, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25721899

RESUMO

Genomically distal mutations can contribute to the deregulation of cancer genes by engaging in chromatin interactions. To study this, we overlay viral cancer-causing insertions obtained in a murine retroviral insertional mutagenesis screen with genome-wide chromatin conformation capture data. Here we find that insertions tend to cluster in 3D hotspots within the nucleus. The identified hotspots are significantly enriched for known cancer genes, and bear the expected characteristics of bona fide regulatory interactions, such as enrichment for transcription factor-binding sites. In addition, we observe a striking pattern of mutual exclusive integration. This is an indication that insertions in these loci target the same gene, either in their linear genomic vicinity or in their 3D spatial vicinity. Our findings shed new light on the repertoire of targets obtained from insertional mutagenesis screening and underline the importance of considering the genome as a 3D structure when studying effects of genomic perturbations.


Assuntos
Cromatina/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Genes Neoplásicos/genética , Infecções por Retroviridae/virologia , Integração Viral/genética , Animais , Núcleo Celular/imunologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , Mutagênese Insercional/métodos , Infecções por Retroviridae/genética
19.
BMC Bioinformatics ; 16 Suppl 3: A1-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25708611

RESUMO

In this meeting report, we give an overview of the talks, presentations and posters presented at the third European Symposium of the International Society for Computational Biology (ISCB) Student Council. The event was organized as a satellite meeting of the 13th European Conference for Computational Biology (ECCB) and took place in Strasbourg, France on September 6th, 2014.


Assuntos
Biologia Computacional , Distinções e Prêmios , Bases de Dados Factuais , Redes Reguladoras de Genes , Modelos Estatísticos , Revisão da Pesquisa por Pares
20.
BMC Bioinformatics ; 14: 29, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23343428

RESUMO

BACKGROUND: Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. RESULTS: We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. CONCLUSIONS: The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.


Assuntos
Inteligência Artificial , Genes Neoplásicos , Mutagênese Insercional , Mapeamento de Interação de Proteínas , Algoritmos , Animais , Análise por Conglomerados , Genômica/métodos , Humanos , Leucemia/genética , Camundongos , Mutação , Taxa de Mutação , Neoplasias/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...